Edge Contractions in Subclasses of Chordal Graphs
نویسندگان
چکیده
Modifying a given graph to obtain another graph is a wellstudied problem with applications in many fields. Given two input graphs G and H, the Contractibility problem is to decide whether H can be obtained from G by a sequence of edge contractions. This problem is known to be NP-complete already when both input graphs are trees of bounded diameter. We prove that Contractibility can be solved in polynomial time when G is a trivially perfect graph and H is a threshold graph, thereby giving the first classes of graphs of unbounded treewidth and unbounded degree on which the problem can be solved in polynomial time. We show that this polynomial-time result is in a sense tight, by proving that Contractibility is NP-complete when G and H are both trivially perfect graphs, and when G is a split graph and H is a threshold graph. If the graph H is fixed and only G is given as input, then the problem is called H-Contractibility. This problem is known to be NPcomplete on general graphs already when H is a path on four vertices. We show that, for any fixed graph H, the H-Contractibility problem can be solved in polynomial time if the input graph G is a split graph.
منابع مشابه
Total-Chromatic Number and Chromatic Index of Dually Chordal Graphs
A graph is dually chordal if it is the clique graph of a chordal graph. Alternatively, a graph is dually chordal if it admits a maximum neighbourhood order. This class generalizes known subclasses of chordal graphs such as doubly chordal graphs, strongly chordal graphs and interval graphs. We prove that Vizing's total-colour conjecture holds for dually chordal graphs. We describe a new heuristi...
متن کاملComplexity of the cluster deletion problem on chordal graphs, subclasses of chordal graphs, and cographs∗
We consider the following vertex-partition problem on graphs: given a graph with real nonnegative edge weights, partition the vertices into clusters (i.e. cliques) to minimize the total weight of edges out of the clusters. This optimization problem is known to be an NP-complete problem even for unweighted graphs and has been studied extensively in the scope of fixed-parameter tractability (FPT)...
متن کاملOn basic chordal graphs and some of its subclasses
Basic chordal graphs arose when comparing clique trees of chordal graphs and compatible trees of dually chordal graphs. They were defined as those chordal graphs whose clique trees are exactly the compatible trees of its clique graph. In this work, we consider some subclasses of basic chordal graphs. One of them is the class of hereditary basic chordal graphs, which will turn out to have many p...
متن کاملMaximum induced matching problem on hhd-free graphs
An induced matching in a graph is a set of edges such that no two edges in the set are joined by any third edge of the graph. An induced matching is maximum (MIM) if the number of edges in it is the largest among all possible induced matchings. It is known that finding the size of a MIM in a graph is NP-hard even if the graph is bipartite. It is also known that the size of a MIM in a chordal gr...
متن کاملHarmonious Coloring on Subclasses of Colinear Graphs
Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous NP-completeness results of the harmonious coloring problem on subclasses of chordal and co-chordal graphs, we prove that...
متن کامل